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ABSTRACT

Stream Control Transmission Protocol (SCTP) is a connection-oriented, reliable,

messaged-based, general purpose transport protocol with congestion control similar to

that used by TCP, supporting advanced features not available in TCP or UDP, such as

multistreaming and multihoming capabilities. Because SCTP is still relatively new, it has

not yet been widely deployed in the Internet despite its many advantages over TCP and

UDP, particularly the fault tolerance provided by multihoming and potential for concur-

rent multipath transfer. The current state of SCTP deployment is essentially a “chicken

and egg” type problem, where application developers are not interested in using SCTP

at the transport layer because end users do not demand its services, but end users do not

demand SCTP services because no current applications are written to support them.

To encourage developers and end users to begin adopting SCTP and build mo-

mentum for more widespread SCTP deployment, we have developed a shim layer which

translates application-level system calls to TCP into corresponding calls to SCTP, al-

lowing legacy TCP applications to communicate using SCTP as the end-to-end transport

protocol without any modifications to the applications themselves. This translation occurs

transparently, so legacy TCP applications are unaware translation to SCTP is occurring.

If the shim detects that translation from TCP to SCTP is not possible for a particular

endpoint or service, the shim will fall back to using a normal TCP connection, ensuring

backwards compatibility.

The TCP-to-SCTP translation shim layer has been implemented in the FreeBSD

4.10 operating system kernel, and supports both client and server functionalities. The

x



shim enables communication between peers using two general architectures: a legacy-

legacy configuration allowing two legacy TCP applications to communicate over SCTP,

and a legacy-native configuration allowing a legacy TCP application to use the shim to

communicate with a native SCTP application. The legacy-legacy mode allows TCP appli-

cations to gain use of some of SCTP’s advanced features without requiring modification

of the applications themselves, while the legacy-native modes allow legacy TCP applica-

tions to interact with their native SCTP counterparts, providing a gradual migration path

to increased SCTP deployment.

Experimental results demonstrate the technical feasibility of this transparent TCP-

to-SCTP translation scheme for several popular network applications including HTTP,

SSH, Telnet, and streaming audio. Additionally, we show application performance (gauged

qualitatively in terms of user perceptions and measured quantitatively in terms of through-

put) using the shim and SCTP is equivalent to or better than performance when applica-

tions operate using TCP as originally designed.

Using the transparent TCP-to-SCTP translation shim lets legacy TCP applications

take advantage of some of SCTP’s advanced features, and allows for interoperability be-

tween legacy TCP applications and their SCTP equivalents. The shim provides a gradual

migration path from TCP to SCTP and facilitates incremental deployment, encouraging

developers and users to begin taking advantage of SCTP’s advanced features.

xi



Chapter 1

INTRODUCTION

1.1 Shim Overview

This thesis introduces a Transparent TCP-to-SCTP Translation Shim Layer. The

cornerstone of this concept is translating application-layer system calls to TCP into equiv-

alent calls to SCTP. This translation process occurs transparently, meaning the application

is unaware its calls to TCP are being mapped to SCTP instead. Lastly, this functionality

is implemented as a shim layer, meaning the logic to accomplish this protocol transla-

tion is inserted into the socket layer between the application and transport layers, leaving

the structure of the existing network protocol stack intact. The shim is designed to be

backwards compatible, automatically reverting to a normal TCP connection for commu-

nications in situations where an SCTP association between the two endpoints or services

cannot be established. In the following sections, we first introduce SCTP and the services

it provides, as well as the concept of multihoming. Next, we motivate the TCP-to-SCTP

translation shim layer by illustrating the advantages of replacing TCP with SCTP as the

end-to-end transport between two communicating peers. Finally, we conclude with an

overview of the organization of the remaining topics of the thesis.

1.2 Stream Control Transmission Protocol

SCTP is a connection-oriented, reliable, messaged-based, general purpose trans-

port protocol with congestion control similar to that used by TCP, supporting advanced

features unavailable in the current transport protocol workhorses of the Internet, TCP

1



and UDP [24]. SCTP was originally developed to carry telephony signaling information

over IP networks because neither TCP nor UDP could meet specific reliability require-

ments mandated for telephone carriers by government regulations. However, over time

SCTP’s set of features have been recognized to be generally useful in more than just the

limited scope of the telephony signaling world. Consequently, SCTP morphed into an

IETF standards-track, general purpose transport protocol [23]. Arguably one of the most

unique and important features of SCTP is support for transport layer multihoming. We

describe multihoming and mention the impacts multihoming has on the transport layer in

the following section.

1.3 Multihoming

A host which has more than one interface is said to be multihomed [1]. Histor-

ically, hosts on the Internet have typically been single-homed due to the relatively high

expense of network interfaces, compared to any serious need to be connected to more

than a single network at a time. As such, the traditional Internet protocols, IP, TCP, and

UDP, have no concept of multihoming since they were not designed with multihoming in

mind.

While uncommon in the past, multihoming is rapidly becoming commonplace on

today’s Internet as interfaces have become inexpensive commodity items and multiple

competing options often exist for Internet connectivity. For example, almost all laptops

sold today include both wired (Ethernet) and wireless (802.11) interfaces as part of the

standard configuration. Simultaneous network connectivity in the form of wireless LAN

technologies such as 802.11 and wireless WAN technologies such as cellular links is often

possible for mobile users in many areas. Likewise, home users often have the potential

to obtain Internet access through different providers offering high-speed cable or DSL

connections.

Despite the fact that today multihoming is frequently economical and practical,

support for multihoming is lacking in the current versions of the major Internet protocols,

2



IP, TCP, and UDP. These protocols are limited by the fact that they were designed in

an era where multihoming was never considered as a design issue. Consider the situation

with TCP: a TCP connection is defined by a four-tuple consisting of a pair of IP addresses

and a pair of port numbers, one per endpoint. No provision exists in TCP for handling

more than one IP address at a given endpoint of a connection. SCTP breaks this mold

by providing integrated support for multihoming at the transport layer. We illustrate the

differences between TCP and SCTP when considering multihoming using Figure 1.1.

BB
11

BB
22

ISPISP

ISPISP

ISPISP

ISPISP

AA
11

AA
22

HostHost

BB

HostHost

AA
Internet

A
1

A
2

B
2

B
1

Figure 1.1: Example multihoming topology

1.3.1 Multiple Addresses in TCP

Consider the example multihoming configuration in Figure 1.1 where two hosts,

A and B, each have two interfaces and IP addresses, A1 and A2 for host A, and B1 and

B2 for host B. Because TCP has no conception of multihoming, only one of the four

combinations of address pairs, {(A1,B1),(A1,B2),(A2,B1),(A2,B2)}, between the two

hosts can be used for a single TCP connection. TCP was simply not designed to allow

for more than one address per endpoint of a connection. As such, even if endpoints have

multiple addresses, TCP may use only one address at each endpoint per connection.
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1.3.2 Multihoming in SCTP

SCTP natively supports multihoming at the transport layer. Consequently, an

SCTP association between hosts A and B, unlike a TCP connection, consists of the entire

set of addresses available at each endpoint, in this case ({A1,A2},{B1,B2}). SCTP can

use any feasible (i.e., allowable by the routing and firewall situation on intermediate net-

works) combination of these available addresses for communication during the lifetime

of a single association, unlike a TCP connection which can only select a single pair of ad-

dresses. While not all possible combinations of source and destination addresses may be

functional in every situation due to routing configurations and the intermixing of public

and private addresses, in theory all possible combinations are initially available to SCTP

and unworkable combinations of addresses are removed from use.

1.4 Motivations for TCP-to-SCTP Translation

The integrated support for multihoming in SCTP is the basis of two important

motivations for replacing calls to TCP with equivalent calls to SCTP using the transpar-

ent shim translation layer. The first motivation is the ability to provide fault tolerance to

legacy applications by using SCTP’s multihoming support. A second motivation is the

possibility of taking further advantage of SCTP’s multihoming capabilities to enable con-

current multipath transfer [7]. Figure 1.2 shows the general architecture for two legacy

TCP applications communicating using the shim. By translating calls to TCP into their

SCTP equivalents, the shim allows legacy TCP applications to communicate using an

SCTP association, potentially taking advantage of SCTP’s fault tolerance and concurrent

multipath transfer abilities. Even in situations where multihoming is unavailable on the

endpoints using the TCP-to-SCTP translation shim, the shim provides the ability for in-

tegration between legacy TCP applications and native SCTP applications, as shown in

Figure 1.3. Thus, the shim solves the “chicken and egg” problem and allows for the

incremental deployment of SCTP.

4
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Figure 1.2: Shim legacy-legacy architecture

1.4.1 Fault Tolerance

SCTP defines the concept of a primary destination address. New data is actively

sent to this address while any remaining addresses on a multihomed system, termed alter-

nate destinations, and are held in reserve for retransmission of data originally sent to the

primary destination in the case of loss or path failure. By using the TCP-to-SCTP transla-

tion shim, TCP applications running on multihomed hosts will be able to take advantage

of the fault tolerant communications ability that is inherently present in SCTP. This fault

tolerance is essentially available to legacy TCP applications using the shim for “free,” as

fault tolerance is a default ability of SCTP.

1.4.2 Concurrent Multipath Transfer

Concurrent multipath transfer (CMT) is an area of ongoing research which in-

volves using multiple network paths for concurrent transfer of new data [7]. The current

SCTP standard specifies that new data can only be sent to a peer’s primary destination;

any alternate destinations are used only for retransmissions for the purposes of fault tol-

erance [24]. Extending SCTP to allow new data to be sent to multiple peer destinations

5



simultaneously has the potential to allow for higher association throughput if the band-

width to do so is available in the network. Using the TCP-to-SCTP translation shim layer,

legacy TCP applications with multiple addresses will be able to take advantage of the

fault tolerance provided by SCTP multihoming, and eventually the increased throughput

of CMT.

1.4.3 Gradual Migration from TCP to SCTP

Even when the endpoints using the TCP-to-SCTP translation shim are not multi-

homed and therefore cannot make use of the fault tolerance and CMT features available

with SCTP multihoming, the shim still serves an important purpose by allowing for a

gradual migration path from TCP to SCTP.

One of the main problems with the adoption of any new network protocol is the

issue of deployment. As an example, consider the situation with IP version 4 and IP

version 6. IPv4 has shortcomings which are rectified in IPv6. However, there is also a

widely deployed base of IPv4 users already in existence. How to smoothly transition all

of the existing IPv4 users to IPv6 without interrupting service across the entire Internet is

a difficult problem because the two protocols are not directly interoperable.

A similar situation exists when considering TCP and SCTP deployment. While

SCTP provides basic TCP-like services in addition to advanced features such as increased

fault tolerance with multihoming, SCTP is not directly interoperable with TCP. Because

of this situation, little motivation exists among application developers to design appli-

cations that take advantage of SCTP’s advanced features at the transport layer because

few users demand SCTP support. Likewise, users do not demand SCTP support for their

applications because support for SCTP is currently limited.

The TCP-to-SCTP translation shim layer encourages migration from TCP to SCTP

(when appropriate and desirable) by allowing for integration and interoperation between

legacy TCP endpoints using the shim, and endpoints that natively support SCTP. This

legacy-native architecture of the shim is illustrated in Figure 1.3. Enabling legacy TCP

6
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Figure 1.3: Shim legacy-native architecture

applications to interact with their native SCTP peers gives developers an incentive to be-

gin using SCTP in new projects because developers can be sure that the existing deployed

base of legacy TCP applications will be compatible with new, native SCTP applications

through the shim translation layer.

1.5 Organization

The remainder of this thesis is organized as follows: Chapter 2 focuses on the

design and implementation of the shim layer, including the general approach taken, the

functionality of of the major components, and the implementation details. Chapter 3

describes the experimental evaluation performed on the shim and the results of both proof-

of-concept and performance testing. Finally, Chapter 4 begins with concluding remarks

about the TCP-to-SCTP shim, and then suggests several areas of future future work and

research directions to investigate.
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Chapter 2

DESIGN & IMPLEMENTATION

2.1 Design Approach

Currently, the most mature, robust, feature-rich, and stable kernel implementation

of SCTP is found in the BSD family of operating systems and distributed as part of the

KAME project [18]. The KAME group is a consortium of companies primarily concerned

with developing a fully-functional IPv6 and IPSec protocol stack. In addition, the KAME

distributions also include support for other up-and-coming or experimental network pro-

tocols such as SCTP and DCCP [8]. Since a functional TCP-to-SCTP translation shim is

absolutely dependent on a stable kernel implementation of SCTP, we selected FreeBSD

to be the operating system used for our shim implementation. Consequently, the specific

design details presented in this thesis are not totally and exactly applicable to all operat-

ing systems, though we believe the general concepts should be widely applicable to any

operating environment supporting the standard sockets API.

At the time the shim implementation work began, the stable KAME distribution

was for FreeBSD 4.10. Although KAME (and thus SCTP) has since transitioned to the

FreeBSD 5 series, we completed the shim in the 4.10 kernel in the interest of having a

fully functional implementation before attempting to port the shim to later versions of

FreeBSD or other operating systems entirely.

The following sections introduce the major design aspects of the transparent TCP-

to-SCTP translation shim. As a preliminary, we first discuss the rationale for implement-

ing the shim in the kernel rather than as a user library (Section 2.1.1). Next, we introduce
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the system’s socket data structure (Section 2.1.2) and describe how it is coupled with a

specific transport protocol (Section 2.1.3). Afterwards, we introduce the key insight into

the design of the shim and show how translation from TCP to SCTP is accomplished in

general (Sections 2.1.4, 2.1.5 and 2.1.6). The remaining sections describe in detail how

each socket system call is modified to support the shim, and how each component of the

shim operates.

2.1.1 Kernel Implementation Versus User Library

One of the first major design decisions faced when beginning the TCP-to-SCTP

shim project was the issue of whether to implement the shim layer entirely within the

kernel or as a library in user space. There are pros and cons to each approach, which we

now overview. Implementing the shim as a user library has several advantages over an

implementation in the kernel:

• The primary advantage of a library implementation is not requiring users to recom-

pile or otherwise upgrade their operating system kernel to make use of the shim

functionality. Modifying the kernel can be a difficult task for nontechnical users, as

well as potentially dangerous if the kernel is not precisely configured and compiled

to operate correctly with the underlying hardware.

• The shim implemented as a user library using the standard sockets API would likely

be more portable between different operating systems or operating system versions

than a kernel-based shim.

• Control over which applications use the shim is simplified since only applications

specifically recompiled with the shim library would actually use the shim.

However, the safety and simplicity of using a user-space library for the shim has

its disadvantages. Most notably, the use of a user library requires the user to recom-

pile/relink each and every application for which they wish to enable the shim. In some
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cases this effort may be a nuisance; as when a user has a large number of applications that

should be shim-enabled. In other situations, recompiling all the necessary applications

might be impossible; consider the case where a user has some proprietary applications

which are distributed only in binary form for which no source code is available to allow

recompilation.

The benefits and drawbacks of implementing the shim in the operating system ker-

nel are essentially the inverses of implementing the shim as a user-space library. While

arguably more complicated than implementation as a user library, implementing the shim

layer directly in the kernel also comes with some important advantages. The main ad-

vantage is that all applications on the system can make use of the shim’s functionality

without requiring recompilation, relinking, or any other modifications whatsoever. Addi-

tionally, because the shim is inside the kernel, the designer has more flexibility and broad

discretionary powers about exactly how the shim will work than is possible in a user-

space implementation. The penalties of a kernel implementation include a less portable

design (a separate shim implementation is needed for each operating system) and the re-

quirement for control mechanisms to decide which applications should use the shim (use

cannot be controlled by linking or not linking with the shim library as in a user-space

implementation).

Because one of our main project goals is transparent translation from TCP to

SCTP without any modifications to legacy applications, a kernel implementation of the

shim layer was the logical (and only) choice. Moreover, despite the danger of less porta-

bility between operating systems, we felt the design advantages of having full-scale kernel

control over the shim would enable a more robust and production-quality implementation

than is possible with a user library.

2.1.2 Socket Structures & Socket Model

The sockets API allows applications to interact with the network in a uniform,

protocol-independent and system-independent way. At the core of the sockets model is
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the notion of a socket. A socket is a single data structure that encapsulates all of the state

information required for a communications endpoint. While the actual number of fields

contained inside a socket in a true implementation is large, the contents of the socket

data structure can be generally summarized as socket state and configuration information,

as well as input and output buffers. In addition to the aforementioned components, one

additional field is of primary importance to the shim work: the protocol field. The protocol

field distinguishes sockets of different protocols. For example, applications might create

and use a UDP socket, a TCP socket, or an SCTP socket. The socket data structures

created in each of these three cases would be practically identical in terms of their basic

makeup except for the protocol field.

Transport protocols supported by an operating system are grouped according to

domains and types in the sockets model. The domain of a protocol refers to its commu-

nications domain, in other words, the addressing scheme. The two most notable domains

on a typical system are the AF INET (IPv4) and AF INET6 (IPv6) domains. Within a do-

main, protocols are subgrouped by type, where the type broadly identifies the communica-

tion semantics associated with a protocol. The typical types in a contemporary operating

system supporting SCTP are SOCK DGRAM for unreliable datagram-based protocols,

SOCK SEQPACKET for reliable datagram-based protocols, and SOCK STREAM for re-

liable stream-based protocols. Although the original sockets model design allowed for

multiple protocols to implement a certain type of service within a particular domain, this

design is not the case in practice. In reality a one-to-one mapping exists between a type

of service and the protocol that implements that service within a given domain. For ex-

ample, in contemporary systems, the only protocol that supports the SOCK DGRAM type

of service is UDP, likewise for SOCK SEQPACKET and SCTP, and for SOCK STREAM

and TCP.

The operating system kernel maintains a list of protocols for each domain where

the members of the list are data structures that completely define a protocol. The data

11



structures, called the protocol switch structures, contain fields that specify the domain

and type of the protocol, the protocol number, a series of flags (detailing characteristics

such as whether or not a protocol is connection-oriented, or if addresses are passed with

each write), and lists of the interfaces/entry points into the protocol. The protocol field

of each socket points to one of these protocol switch structures, as shown in Figure 2.1.

This link to a specific protocol definition in the kernel specifies the exact functionality for

what would otherwise be a generic socket data structure. In the case of a TCP socket, the

link to the TCP protocol switch structure makes the socket specifically a TCP socket and

not a socket bound to some other protocol.

ProtocolProtocol

StateState

Send BufferSend Buffer

Receive BufferReceive Buffer

ConfigurationConfiguration

…

TCPTCP
(Protocol Module(Protocol Module

Interfaces)Interfaces)

Figure 2.1: Normal TCP socket format

An important distinction to make when dealing with sockets is the difference be-

tween a socket data structure, which is an object allocated inside the operating system

kernel, and a socket descriptor, which is an identifier used by the application to reference

a certain socket object inside the kernel. The mapping from a socket descriptor to its

corresponding socket object occurs through the kernel’s descriptor table. The importance

of this distinction in relation to the TCP-to-SCTP translation shim will be explained in

Section 2.1.5.
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2.1.3 Protocol Attach & Detach

The binding between a generic socket object and a specific protocol that trans-

forms a socket into a socket of a specified protocol occurs when a socket is created. Re-

call the usual process by which an application creates a new socket using the socket()

system call, shown in the code listing below. Note how the domain, type, and protocol

values described earlier are passed to socket() so that the requested type of socket is

created by the kernel.

socket_descriptor = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

When socket() is called, the kernel uses the specified domain, type, and protocol

parameters to find the switch structure for the requested protocol in the lists of protocols

the kernel maintains. After locating the proper protocol switch structure, the kernel uses

the protocol’s interface table to call that protocol’s attach() function. The attach()

call serves two purposes. First, attach() implements the binding between the socket

and the specific protocol. Second, attach() notifies the protocol that it must support a

new socket, and reserves any resources necessary to accomplish that task. The counterpart

to a protocol’s attach() function is called detach(). As expected, detach() deallo-

cates any resources previously allocated by attach() when the socket was created, and

removes the binding between the socket data structure and the protocol.

One might initially conclude that to support a TCP-to-SCTP translation shim, the

most obvious approach is to take an existing TCP socket, detach TCP from the socket,

and then attach SCTP instead, effectively transforming a TCP socket to an SCTP socket.

Unfortunately, this approach is not possible given the operation of the detach() function.

In addition to deallocating resources and removing the binding between a socket and

protocol, detach() goes one step further, actually deallocating the entire socket data

structure as well. The reason for deallocating the socket is a design issue. When the

FreeBSD networking subsystem was designed, the assumption was that both attach()

and detach()would be called exactly once during the lifetime of a socket, since changing
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the protocol a socket is bound to while it is in use would not typically be considered

desirable or useful.

2.1.4 Hidden SCTP Socket

As a result of the behavior of attach() and detach(), the TCP-to-SCTP trans-

lation shim requires two separate socket data structures, one bound to TCP and the other

bound to SCTP. The TCP socket is created normally as a result of the usual socket()

system call. On a system incorporating the TCP-to-SCTP translation shim, the traditional

socket() system call is then modified so that in addition to creating the normal TCP

socket, a second hidden SCTP socket is created as well. It is termed hidden because it

is created by the kernel but not exposed to the application. The existence of a traditional

socket is made known to the application because a socket descriptor is returned; the shim’s

SCTP socket is created but remains hidden from the application in accordance with the

goal of transparent translation from TCP to SCTP.

Because the hidden SCTP socket is inaccessible via a normal socket descriptor,

the kernel needs some way of keeping track of each pair of normal TCP and hidden

SCTP sockets that are created. This tracking is accomplished by adding a new field to

the system’s standard socket data structure, which allows the hidden SCTP socket to be

linked from its corresponding TCP socket. Figure 2.2 illustrates the relationship between

a normal TCP socket and its hidden SCTP socket. The new shim state and shim parent

fields visible in the figure are discussed in Sections 2.1.6 and 2.5.3, respectively.

2.1.5 Socket Layer in Detail

Networking specialists think of the five-layer TCP/IP Internet model consisting

of the application, transport, network, link, and physical layers. However, from an im-

plementation point of view, the five-layer model neglects one of the most critical layers:

the socket layer. The primary focus of the shim work is the socket layer, acting as an
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(Protocol Module(Protocol Module

Interfaces)Interfaces)

Send BufferSend Buffer
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StateState
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…
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Receive BufferReceive Buffer
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Hidden SCTP Shim Socket
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Figure 2.2: Normal TCP socket with hidden SCTP socket

intermediary between an application and the transport protocols. The socket layer itself

is actually composed of several sublayers as shown in Figure 2.3.

The top sublayer of the socket layer is made up of the socket system call stubs.

These functions form the API applications use to make requests upon the lower layers.

The stub functions do not perform any actual networking actions themselves; they only

package application layer arguments into the format expected by the kernel, and then

make the system call to enter into kernel execution mode. The socket system call stubs

are typically included in a library that is linked with any application wishing to make use

of network services.

The sublayer immediately below the level of the socket system call stub func-

tions is the layer where the socket system call implementations lie. These are the func-

tions inside the kernel which actually implement the functionality of the sockets API. All

of the typical socket system calls such as socket(), connect(), bind(), listen(),
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Figure 2.3: Socket layer in detail

accept(), etc., are implemented here.

The system call implementations also make extensive use of a set of lower level

functions called the socket layer functions. Each of these functions performs a specific

networking task on a specific socket passed as an argument. In turn, the socket layer func-

tions then make calls directly into the transport protocol modules themselves, requesting

specific functionality from TCP or SCTP in the case of the shim.

An important distinction among the application layer, the various sublayers of the

socket layer, and the transport layer is how sockets are treated at each level. Applications

and the socket system call stub functions operate on socket descriptors: integer indexes

into a lookup table maintained inside the kernel that is used to find the socket data struc-

ture the application is using (similar to how UNIX file descriptors work). Once the socket

data structure has been located, the socket layer functions, transport protocol modules,
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Figure 2.4: Socket descriptor/object mapping and socket substitution for lower layers

and all lower layers use this socket data structure directly. The transition point where

a socket descriptor is mapped to the specific socket object that the descriptor references

occurs at the socket system call implementation level. At this point, the kernel can locate

the normal TCP socket object referenced with a descriptor by the application, and operate

on the socket object corresponding to that descriptor. Figure 2.4 illustrates this mapping

from socket descriptors to socket objects in the kernel. Extended to incorporate the TCP-

to-SCTP translation shim idea, this point is where the kernel can follow the link from a

normal TCP socket to its hidden SCTP socket (described in Section 2.1.4), and then oper-

ate on the hidden SCTP socket as well. We describe how this selection between a normal

TCP socket and its hidden SCTP socket relates to the functioning of the translation shim

in Section 2.1.6.
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2.1.6 Socket Substitution in System Calls

As described in Section 2.1.2, every socket object has a pointer to the protocol

switch structure for the transport protocol associated with the socket. Using the table

of interface functions found in the protocol switch structure, generic network requests

made through the sockets API are mapped to the specific protocol implementation that

executes to serve those requests, as shown in Figure 2.5. For example, suppose an appli-

cation calls connect(). The functionality of the connect() system call depends on the

underlying protocol in use. TCP’s connect() function must perform a three-way SYN,

SYN-ACK, ACK handshake; while calling connect() with UDP simply sets state on the

local system; and calling connect() in SCTP requires an INIT, INIT-ACK, COOKIE-

ECHO, COOKIE-ACK four-way handshake. The actual code that is executed to fulfill

the connect() request is selected via the mapping established by the protocol pointer in

each socket data structure.

Because of the existence of this socket-protocol mapping, the behavior at the trans-

port layer depends entirely upon the protocol of the socket passed down through the ker-

nel. Using the TCP-to-SCTP translation shim, every TCP application has two associated

sockets: a normal TCP socket that is created by default, and a hidden SCTP socket that is

linked to the normal TCP socket. The shim manipulates whether TCP or SCTP is used at

the transport layer by intelligently deciding which of the two sockets to pass down to the

lower layers of the kernel. This technique of deciding which socket to substitute into calls

to the lower layers of the kernel is the core approach to how transparent TCP-to-SCTP

translation is accomplished in this work. While some system calls clearly require more

extensive modifications to support the desired shim functionality, many of the sockets-

related system calls require only simple logic that decides to pass either the TCP socket

or the SCTP socket to the lower layers, depending on the shim’s current operating state.

In the following sections, we describe exactly what the desired behavior of the shim will

be for both client and server applications, and detail the changes made to each affected
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Table 2.1: System calls and functions modified by shim

System Call / Function Source File Type
socket() uipc syscalls.c Socket API system call
bind() uipc syscalls.c Socket API system call
listen() uipc syscalls.c Socket API system call
connect() uipc syscalls.c Socket API system call
sendit() uipc syscalls.c Socket API system call
recvit() uipc syscalls.c Socket API system call
shutdown() uipc syscalls.c Socket API system call
setsockopt() uipc syscalls.c Socket API system call
getsockopt() uipc syscalls.c Socket API system call
getsockname() uipc syscalls.c Socket API system call
getpeername() uipc syscalls.c Socket API system call
sendfile() uipc syscalls.c Socket API system call

soclose() uipc socket.c Socket layer function
sosetopt() uipc socket.c Socket layer function
sogetopt() uipc socket.c Socket layer function

sonewconn() uipc socket2.c Socket layer function

soo read() sys socket.c Socket descriptor system call
soo write() sys socket.c Socket descriptor system call
soo ioctl() sys socket.c Socket descriptor system call
soo poll() sys socket.c Socket descriptor system call
soo stat() sys socket.c Socket descriptor system call

sockets-related system call or function listed in Table 2.1.

2.2 Controlling Shim Use

To be of practical use to typical users, an operating system implementing the trans-

parent TCP-to-SCTP translation shim needs to have an effective means for controlling

the shim functionality. Whether in an experimental or production environment, the shim

feature may be desirable for some applications but not for others. To encourage users

to experiment with and hopefully adopt the shim when it could be practical, we have

designed and implemented a system to control the use and behavior of the shim. This
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section describes the control mechanisms that are in place to decide which applications

should use the shim, and under what circumstances. Section 2.9 describes the configura-

tion parameters available to tailor and enhance shim performance.

2.2.1 Global Default Policies

In FreeBSD, most tunable operating system parameters are implemented as sysctls.

The sysctl interface allows an administrator to configure the system’s kernel variables dy-

namically [15]. Since network protocols typically have a large number of tunable param-

eters, the sysctl interface facilitates adjusting system properties without requiring editing

of source code and recompilation of the kernel. We take the same approach with many of

the shim’s configuration variables.

The primary means of controlling the TCP-to-SCTP translation shim is through

a global on/off switch for the entire system. This approach offers only a crude level of

control over when to use the shim. To enhance an administrator’s flexibility, we divide

shim control into two broad classes: control over applications with local listening sockets

(typically servers), and control over applications connecting to remote systems (typically

clients). We define two new sysctls to specify the default policy for each of these two

classes of applications. The sysctls, shown below, are boolean variables where zero spec-

ifies the shim is disabled, and any nonzero value indicates the shim is to be enabled for

that class of applications.

net.inet.sctp.shim.default_local_enable
net.inet.sctp.shim.default_remote_enable

Dividing all applications into two control classes to manage shim functionality is

not nearly fine-grained enough for serious use. However, the global default policies do

form the basis for a more advanced rule-based shim control system. To provide more

precise control over application use of the shim, we extended the system to allow an

administrator to selectively enable or disable the shim on a per-application basis using

rules.
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2.2.2 Shim Use Rules

The basic building block of the shim control system is a rule object. A rule consists

of an IP address, a subnet mask, and two port numbers, as illustrated in the following code

listing:

struct shim_rule {
int chain;
int policy;
int type;
uint16_t port1;
uint16_t port2;
struct in_addr address;
struct in_addr netmask;

};

These fields allow a rule to represent one of the following atomic units:

• A specific IP address (address)

• A specific network (address + netmask)

• A single port (port1)

• A contiguous range of ports (port1 + port2)

Since a rule only has enough storage for one address and one netmask, a rule

can be used to represent a single address or all addresses on a certain network, but not

both at the same time. Similarly, a rule only has enough storage for a maximum of

two port numbers, so a rule can specify a single port or a range of ports, but not both

simultaneously. However, because the storage for the address and mask is independent of

the storage for ports, a rule can also represent several combinations of address/network

and port information:

• An IP address and single port (address + port1)
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• An IP address and a port range (address + port1 + port2)

• A network and single port (address + netmask + port1)

• A network and a port range (address + netmask + port1 + port2)

The combination of address, network, and port number(s) in use by a particular

rule is specified by the flags set in the type field. A rule also has two additional fields:

chain and policy. The chain is either local or remote, specifying that the rule applies to

one of the broad classes of applications (i.e., clients or servers) described in Section 2.2.1.

The policy is either enable or disable, reflecting whether or not the shim should be used

for applications that match the other fields of the rule (i.e., address, network, and port(s)).

If any field of a rule is unspecified (i.e., only the address information is used and ports are

unspecified), then the unspecified field is considered to be a wildcard and does not restrict

the matching process.

2.2.3 Shim Rules Organization

All shim rules currently in effect are grouped logically into chains of similar rules

based on the chain and policy fields. Recall that the chain field defines whether a rule

applies to applications with local listening sockets (i.e., servers) or applications which

connect to remote peers (i.e., clients). The chains of local and remote rules are further

subdivided based on a rule’s policy, resulting in four separate chains or classes of rules:

local-enable, local-disable, remote-enable, and remote-disable. The reason for subdivid-

ing all of the rules into these four particular chains is to enable quick location of relevant

rules when the kernel initiates a lookup to determine whether to enable or disable the shim

for a particular application. These four chains of rules comprise the shim rules table.
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2.2.4 Operation of Shim Rules Table

The shim rules table is maintained inside the kernel, and is consulted by the kernel

whenever it needs to decide whether to enable or disable the shim for a particular ap-

plication. Two system calls trigger a lookup using the shim rules table: connect() and

bind(). These two calls represent the two points where the kernel can easily examine the

socket addresses (objects containing an address and port number) being passed in from

the application. Specifically, the address and port number of the remote endpoint a client

application wishes to contact are passed to connect(). Likewise, a local address and port

to bind to are passed by a server application to bind(). Both connect() and bind() oc-

cur early in the lifetime of a socket before any connection exists or data transfer occurs,

so they are logical decision points to enable or disable the shim.

The decision process to enable or disable the shim begins when a client applica-

tion calls connect(), or a server application calls bind(). At these points, the kernel

checks the value of the global default shim policy for the class of the application, either

a client (governed by the default remote enable sysctl) or a server (governed by the

default local enable sysctl). One of the four chains in the shim rules table is searched

depending on whether the governing default policy is to enable or disable the shim. In

the case of a connect() call, the kernel first checks the default remote enable vari-

able. As an example, if the remote default policy is set to disable, the shim is disabled by

default for client applications connecting to remote servers. Based on this default policy,

the kernel searches the remote-enable chain in the shim rules table, determining if the

address and port number passed by the application to the connect() call match a rule in

the chain that overrides the default policy, specifically enabling the shim for the applica-

tion. For a server application making a bind() call, the kernel checks the value of the

default local enable sysctl variable. Supposing that the local default policy is set to

enable, the kernel would then search the local-disable chain of the shim rules table. If the

local address and port the application wishes to bind to match with one of the rules found
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in the local-disable chain, then the kernel overrides the default, specifically disabling use

of the shim for the application. The other two situations not described that use the remote-

disable and local-enable chains follow along the same lines as the two examples we have

illustrated.

The search process in the shim rules table returns the policy of the first rule that

matches the address and port information passed in by the application, even if that rule is

not the most specific match present in the list. For example, suppose the chain of the rules

table to be searched has one rule that matches any port in the range 1−1024, and any IP

address. Also assume that a rule later in the list has the specific port number 1000 and

the specific network 10.1.2.0/24. Even if an application passes a socket address structure

with port 1000 and address 10.1.2.3, the first rule is selected despite a more exact match

later in the list. Because of “first match” rather than “best match” behavior, administrators

must consider rule ordering, placing the most specific rules first and more general rules

afterwards.

2.2.5 User-Kernel Interface for Shim Rules Table

Configuration of the shim rules table is accomplished using the shimrules userspace

tool we designed and implemented. The tool provides a command line interface to allow

a system administrator to perform rule configuration tasks, such as adding and deleting

rules, setting the default policies, flushing the rules table, and getting a listing of all the

rules currently in place on the system. Usage information for the shimrules configu-

ration program is shown in Figure 2.6. The commands and rule specification options

allowed by the shimrules tool correspond to the types of rules supported by the rules

table implementation in the kernel.

The interface between user space and the kernel is through the addition of new

shimrules socket options. The new options are implemented in the socket layer and sup-

port all of the shimrules functionalities. The way the user space shimrules program

uses the socket options to interact with the kernel is similar to the design of the FreeBSD
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Usage: shimrules -[AD] -c <chain> -p <policy> <rule specification>
shimrules -L [-c <chain>] [-p <policy>]
shimrules -[FH]
shimrules -G -c <chain>
shimrules -S -c <chain> -p <policy>
Commands:
-A Add rule
-D Delete rule
-L List rules
-F Flush all rules
-G Get default policy
-S Set default policy
-H Show usage information
Chains: local, remote
Policies: enable, disable
Rule Specifications:
-h <address> [-s <port> | -r <port1>:<port2>]
-n <address>/<netmask> [-s <port> | -r <port1>:<port2>]
-s <port> [-h <address> | -n <address>/<netmask>]
-r <port1>:<port2> [-h <address> | -n <address>/<netmask>]
Specification parameters:
-h Host IP address
-n Network address and netmask
-s Single port number
-r Range of port numbers

Figure 2.6: Usage information for shimrules tool

ipfw firewall configuration tool [16]. The options to support the shimrules tool are im-

plemented as part of the sogetopt() and sosetopt() socket layer functions as shown

in Table 2.2. The shimrules socket options, which update the state of the kernel’s shim

rules table, are implemented in sosetopt(), and include the options to add rules, remove

rules, flush all rules, and set the system global default policies. The read-only shimrules

socket options are implemented in sogetopt() and include the options to get a listing of

all rules currently in the shim rules table, and to get the current default global policies.
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Applications use the setsockopt() and getsockopt() system calls, which in turn in-

voke the socket option implementations in the lower level sosetopt() and sogetopt()

functions, respectively. The parameters and use of each of the shimrules socket options

for setsockopt() and getsockopt() are as follows:

• SHIM RULE ADD & SHIM RULE DEL: The two options to add and delete

a rule both take an argument of type shim rule, the format of which was shown

earlier. An application specifies the chain and policy parameters that the kernel uses

to classify the rule, and place it into the proper chain inside the shim rules table as

described in Section 2.2.3. Once in the correct chain, the address, network, and port

information of the rule is used for matching application network usage as explained

in Section 2.2.4. These socket options are accessed by the application using the

setsockopt() system call.

• SHIM RULE FLUSHALL: The FLUSHALL socket option takes a single integer

as an argument. The integer argument is used as a confirmation value. If the value is

non-zero, the entire rules table is flushed, otherwise no action is taken. Applications

access this option using the setsockopt() system call.

• SHIM RULE DEFAULT: The DEFAULT socket option is used in conjunction

with the getsockopt() and setsockopt() system calls to get and set the global

default policies for the local and remote chains of the shim rules table. The ar-

gument to the DEFAULT option is a shim default policy object, the format of

which is shown below.

struct shim_default_policy {
int chain;
int policy;

};

When setting a policy, an application specifies both the chain and policy for the

kernel to set for that chain. When getting the current default policy, an application
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Table 2.2: New shimrules socket options

Socket Option System Call Used Implementation Function
SO SHIM RULE ADD setsockopt() sosetopt()
SO SHIM RULE DEL setsockopt() sosetopt()
SO SHIM RULE FLUSHALL setsockopt() sosetopt()
SO SHIM RULE DEFAULT {set/get}sockopt() so{set/get}opt()
SO SHIM RULE GETALL getsockopt() sogetopt()

specifies only the chain for which the policy should be retrieved, and the kernel fills

in the policy for the requested chain, returning the whole default policy object to

the application.

• SHIM RULE GETALL: The GETALL option is used by applications to retrieve

a listing of all current rules in every chain of the shim’s rules table. An application

makes a call to getsockopt(), specifying a buffer large enough to hold all of the

rules. The kernel fills the buffer space with a listing of all the rules, and then re-

turns the buffer to the application, updating the size to reflect the total amount of the

buffer used for rule storage. In the event the buffer passed in by the application is

too small to hold all of the rules, the kernel returns an error. In response, the appli-

cation can begin increasing the buffer size until the call returns successfully. Once

the application has access to all the rules in the buffer, the rules can be accessed or

displayed by the application as desired.

2.3 Shim States

To support the hidden socket first introduced in Section 2.1.4, three new fields

were added to the system’s normal socket data structure: a pointer to the hidden socket,

a shim state variable, and a pointer to the hidden socket’s parent socket. Section 2.2.4

describes the operation of the shim rules table, and how it is used to enable or disable

the shim for specific applications. In this section, we explain how the shim state variable
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is used in conjunction with the shim rules table to control the state of the TCP-to-SCTP

translation shim. The purpose and use of each state is defined below:

• SHIM NOTINIT: The default shim state when a new TCP socket is created. When

a new TCP socket is created using the socket() system call, initially the hidden

SCTP socket does not exist. A state of NOTINIT in the normal socket declares to

the kernel that the hidden socket is not yet created and should not be used. During

the later stages of the socket() call, the hidden socket is created and the shim state

of the normal parent socket changes to READY.

• SHIM READY: After the hidden SCTP socket has been successfully created dur-

ing the execution of the socket() system call, the normal parent TCP socket that

points to the hidden SCTP socket receives the state READY to indicate to the kernel

that the hidden socket exists and is ready to be used if needed.

• SHIM ENABLE MANUAL: For debugging purposes, a special socket option ex-

ists to allow an application to directly enable the shim. While manual enabling of

the shim would never occur in the case of a legacy TCP application because using

the shim-enabling socket option requires knowledge of the existence of the shim,

the option exists to allow shim developers to write test suites that work indepen-

dently of the shim rules table. The ENABLE MANUAL state indicates to the kernel

that shim use has been manually enabled for the application, and use of the shim

should be attempted for any interaction with peer endpoints.

• SHIM ENABLE SRULES: When the shim has been enabled for a particular ap-

plication as determined by the rules table lookup process described in Section 2.2.4,

the state of the normal parent TCP socket is set to ENABLE SRULES. This state in-

dicates to the kernel that the shim has been enabled for the application, and shim

use should be attempted for any interaction with peer endpoints.
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• SHIM ACTIVE: During the connect() system call, if the kernel finds the shim

state is READY and shim use has been allowed by either ENABLE MANUAL or

ENABLE SRULES, then the kernel attempts to use an SCTP association to com-

municate with the remote endpoint, falling back to TCP if SCTP is unavailable. If

the connection establishment phase with SCTP is successful, the shim transitions

to the ACTIVE state. This state indicates to the kernel that the application is a client

which has successfully connected to a remote server using SCTP, and the shim is in

active use for communications between the client its peer. Because of the ACTIVE

state set in the parent TCP socket, the kernel knows to use the hidden SCTP socket

for all network interaction instead of the normal TCP socket.

• SHIM LISTEN: Unlike a client application where the shim is enabled and enters

active use during the span of a single system call, the process is divided into two

steps for a server application. When a server application makes the call to bind(),

the shim rules table is consulted and the shim state changes to ENABLE SRULES if

the bind address and port number match a rule in the appropriate chain in the table.

Although enabled, the shim does not enter active use until the listen() system

call is made. During the listen() call, if the kernel finds the shim state is READY

and shim use has been allowed by either ENABLE MANUAL or ENABLE SRULES,

then the kernel activates the shim for listening on the hidden SCTP socket and enters

the LISTEN state.

• SHIM HIDDEN: Unlike all of the previous shim states which are set in the normal

parent TCP socket, the HIDDEN state is set on each and every hidden SCTP socket.

This state allows the kernel to identify if a particular socket is a hidden SCTP socket

and not a normal TCP socket. The HIDDEN state also indicates that the parent

pointer of the hidden socket is valid, and points to the parent TCP socket as shown

in Figure 2.2.
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• SHIM NATIVE: Each of the shim states introduced so far applies to either a

normal parent TCP socket (NOTINIT, READY, ACTIVE, ENABLE MANUAL, EN-

ABLE SRULES, and LISTEN) or a hidden SCTP socket (HIDDEN). The common

thread among all of the states introduced for the parent and hidden sockets is that

those sockets are created directly by the application. The NATIVE state applies to

new sockets created by the kernel to represent the communications endpoint for re-

mote peers connecting to the local listening server. When a TCP server application

uses the shim, SCTP peers can connect and communicate with the server. How-

ever, the sockets created for each connection are native SCTP sockets — they are

independent sockets that do not have a parent or child relationship with any other

sockets. While the functionality of the shim in a server scenario is described in

detail in Section 2.5, the importance of the SHIM NATIVE state is that it allows the

kernel to distinguish a native SCTP socket used by the shim from a hidden SCTP

socket used by the shim. The kernel operates differently on these two types of

sockets, thus the importance in keeping them properly classified.

Figure 2.7 shows the typical transitions between the shim states for a client and

server application. Note the SHIM HIDDEN and SHIM NATIVE states are immutable.

Any socket with one of those states remains in that state for the lifetime of the socket.

2.4 Client Socket Functionality: Connect

The connect() system call is one of the major functions modified to support the

TCP-to-SCTP translation shim. At a high level, the behavior of the connect() system

call is as follows: First, the client application makes the connect() call, passing a socket

address consisting of the address and port number of the remote endpoint into the kernel.

Using the process described in Section 2.2.4, the kernel searches the appropriate chain of

the shim rules table to decide if the shim should be enabled or disabled for the applica-

tion making the call to connect(). If the shim is disabled, the normal TCP connection
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Figure 2.7: Shim states and typical transitions for client and server applications

process continues without modification. However, if the result of the rules table lookup

is that the shim is to be enabled for the application calling connect() and the normal

socket is in the SHIM READY state, a different sequence of events takes place. Rather

than initiating the establishment of a TCP connection with the normal TCP socket, the

kernel initiates the establishment of an SCTP association to the same remote address and

port using the hidden SCTP socket. In the event the server running at that remote address

and port also supports SCTP (over the shim or natively), an SCTP association will be

set up and all communications between the two endpoints will be over SCTP. Once the

peers are associated successfully using SCTP, the shim state for the normal TCP socket is

changed to SHIM ACTIVE to signify that the SCTP socket is in active use for communica-

tions, and all future calls (i.e., send(), recv(), etc.) should be performed on the hidden

SCTP socket rather than the normal TCP socket. If for some reason the SCTP association

fails to be established, the kernel falls back to a regular TCP connection. In such a case

the socket’s shim state will remain SHIM READY, indicating the hidden SCTP socket is
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available but currently inactive.

Before association establishment is attempted using the shim, several of the socket

and socket buffer configurations from the normal TCP socket are cloned and applied to

the hidden SCTP socket. The reason for this cloning operation is that an application

could create a socket and change several configuration parameters before the shim is

actually enabled by the rules table lookup during the connect() call. If these parameters

are set before enabling the shim, the hidden shim socket will not receive the updated

configuration — the normal TCP socket will. The cloning step ensures the hidden SCTP

socket receives any configurations the application may make to the normal TCP socket

before the shim becomes active. Having identical configurations guarantees the SCTP

association behaves as the application expects in terms of the following:

• All socket options

• Socket linger settings

• Nonblocking and asynchronous I/O states

• Connection queue limit

• I/O signal handling function

• High and low water marks for send and receive socket buffers

• Socket buffer asynchronous I/O flags

• Socket accept filter

To control how long the kernel attempts to establish the SCTP association before

falling back to a normal TCP connection, we added the shim.init rtx max sysctl de-

scribed in Section 2.9.2. The connect() system call sets this parameter using an SCTP

socket option before the SCTP association establishment is attempted. Also before initiat-

ing the association establishment, connect() sets another configuration parameter based
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on the shim.path rtx max sysctl for the association being established. This value is used

to configure path failover thresholds and is described in Section 2.9.3.

2.5 Server Socket Functionality

Unlike the functionality of the TCP-to-SCTP translation shim for a client appli-

cation, which initially tries to establish communications with the peer endpoint and fails

back to normal TCP if SCTP is unavailable, the server application functionality of the

shim is a hybrid approach that allows a single instance of a server process to serve both

TCP and SCTP clients concurrently. At a high level, the sequence of events for a server

application on a system supporting the shim is as follows: First, an application makes the

bind() system call. Inside bind(), the kernel decides if the shim should be enabled or

disabled and changes the shim state for the application accordingly before actually per-

forming the binding of the SCTP (if the shim is enabled) and TCP sockets. When the

application calls listen() next, the sockets which were bound during the bind() call

are then enabled for listening, and the server is ready to accept and serve SCTP (if the

shim is enabled) and TCP clients. We describe the changes to the bind() and listen()

system calls in Sections 2.5.1 and 2.5.2, and then explain how the shim modifies the

sonewconn() function to allow the server to handle connecting TCP and SCTP clients in

Section 2.5.3.

2.5.1 Bind

The bind() system call has two major roles when modified to support the shim.

First, bind() performs a lookup into the shim rules table with the address and port num-

ber to be bound to determine whether to enable or disable the shim for the application

using the process described in Section 2.2.4. If the shim is to be enabled for the applica-

tion, bind() will initially bind the hidden SCTP socket to the address and port number

specified by the application. If this binding fails, the error is silently discarded and the

application will fail back to only serving TCP clients. After binding the hidden SCTP
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Figure 2.8: Duplication of bind() and listen() calls for server applications

socket with the address and port specified by the application, bind() then performs the

normal bind with the TCP socket. Any error with the TCP bind is reported to the appli-

cation, since the design of the shim mandates that TCP always be available as a failsafe

option, whereas it is expected that SCTP and the shim may sometimes be unavailable.

Figure 2.8 illustrates the duplication of the bind() call for the normal TCP and hidden

SCTP sockets.

As an extension to the shim binding process with the SCTP socket, a configuration

option is implemented to force bind() to override the application, binding the SCTP

socket to all possible addresses on a multihomed system, rather than just the single address

passed by the application to bind(). This option, described in Section 2.9.1, is designed

to improve the chances that multihoming provides fault tolerance and the possibility of

increased throughout (with CMT) to the application.

2.5.2 Listen

After calling bind(), the application next calls listen() to put the server’s hid-

den SCTP (if the shim is enabled) and normal TCP sockets into the listening state, allow-

ing clients to begin connecting. Figure 2.8 shows the duplication of the listen() call
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for the two sockets. If the shim is enabled, listen() also changes the shim state for the

application to SHIM LISTEN as described in Section 2.3, indicating that the application

is in a hybrid mode supporting both SCTP clients and normal TCP clients. As well as

enabling listening on the SCTP and TCP sockets, listen() also clones several socket

and socket buffer configuration parameters from the normal TCP parent socket, and sets

them on the hidden SCTP socket. This cloning operation allows an application to create

a socket and change several configuration parameters before the shim is actually enabled

by the rules table lookup in the bind() call. If these parameters are set before enabling

the shim, the shim will not receive the same updated configuration that the normal TCP

socket receives, resulting in inconsistency between how clients of the two protocols are

handled. The cloning step ensures that both sockets have the same configuration at the

time the shim enters the SHIM LISTEN state and begins serving clients. The cloned pa-

rameters include the following:

• All socket options

• Socket linger settings

• Nonblocking and asynchronous I/O states

• Connection queue limit

• I/O signal handling function

• High and low water marks for send and receive socket buffers

• Socket buffer asynchronous I/O flags

• Socket accept filter

Once the SCTP and TCP sockets are bound and listening, the relevant TCP socket

configuration parameters are cloned for the hidden SCTP socket, and the shim state for
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the application is set to SHIM LISTEN, the server may begin serving clients that connect

via either TCP or SCTP. We describe how the connecting clients are made accessible to

the server application in Section 2.5.3.

2.5.3 Servicing Connecting Peers

Remote peer endpoints initiate communication with a TCP or SCTP server ap-

plication by sending SYN or INIT messages, respectively. The transport protocol then

handles the connection (TCP) or association (SCTP) handshaking process. During es-

tablishment, the transport protocol creates a new socket to represent the communications

endpoint for each connecting client. Upon completion of the establishment phase, this

socket is then inserted into the listening socket’s queue of established connections (or

associations) awaiting service by the server application. The mechanism used to extract

the newly created sockets from the waiting queue is the accept() system call. An ap-

plication calls accept() to retrieve the first fully established, waiting socket from the

front of the queue. The returned socket is then used according to the application protocol

behavior.

Recall that with the shim enabled, a server application actually has two listening

server sockets: the normal TCP socket and the hidden SCTP socket. New sockets from

connecting TCP clients are queued in the listening TCP socket’s list, while SCTP sockets

from newly connected SCTP clients are normally queued in the listening SCTP hidden

socket’s list. To support a hybrid server approach, a server application needs some way

of retrieving sockets from both lists, and a policy for deciding which list to choose from

if both have waiting clients. Rather than implementing the retrieval logic by modifying

the accept() system call to retrieve sockets from both queues, we designed the shim to

handle the problem at a lower level with a cleaner overall design. Our approach modi-

fies the kernel’s sonewconn() function, which is responsible for queuing the sockets of

completed connections into the waiting lists in the corresponding listening sockets. If a

newly created socket is going to be inserted into the hidden SCTP socket’s waiting list,
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sonewconn() instead follows the hidden SCTP socket’s parent pointer (introduced in

Section 2.1.4) and queues the new socket into the normal TCP listening socket’s queue.

Consequently, sockets for newly established client connections from both the TCP and

SCTP listening sockets are queued and intermixed in a single list in the normal TCP

socket. When the unmodified accept() call is made, both TCP and SCTP sockets can

be returned from the waiting list to the server application, allowing for the desired dual-

protocol hybrid operation of the shim. Figure 2.9 illustrates the architecture of the TCP

and SCTP listening sockets and how newly created sockets are maintained in a single list.

2.6 Socket I/O

Although the I/O system calls of the sockets API have some of the most compli-

cated implementations compared to all of the other socket operations, the modifications

required to allow them to support the shim are straightforward. The nature of a socket

requires two sets of I/O functions to operate seamlessly with the rest of the operating sys-

tem. The first set consists of the specifically designed network I/O calls, such as send(),

recv(), sendto(), recvfrom(), sendmsg(), and recvmsg(). The second set consists

of the standard UNIX I/O calls, implemented especially for use with sockets. The sec-

ond set of functions is required because a socket descriptor is allowed to be used by an

application in a similar fashion to a true file descriptor, thus applications need to support

the standard read(), write(), ioctl(), poll(), and stat() system calls normally as-

sociated with file I/O. We describe the shim modifications required for the two classes in

Sections 2.6.1 and 2.6.2.

2.6.1 Socket Operations: Send, Receive, & Sendfile

The six network I/O system calls of the sockets API are send(), recv(), sendto(),

recvfrom(), sendmsg(), and recvmsg(). All of the sending (receiving) functions are

similar, differing in the number of parameters that can be specified by an application

at the time the I/O call is made. For example, send() allows an application to specify
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only a buffer of data to send and a set of message flags. The sendto() function extends

send()’s feature set by additionally allowing the application to specify a destination ad-

dress. The sendmsg() function further extends sendto() by allowing an application to

additionally specify ancillary data (control information) using a message header structure

that is passed into the kernel [13]. The relationships between the three receiving system

calls are identical to the relationships between their respective send calls [12].

Inside the kernel, all six of the send and receive system calls are built upon two

fundamental functions, sendit() and recvit(), which implement the core sending and

receiving behavior, respectively. The visible socket I/O calls build on the two base func-

tions by adding additional processing to handle the increasing level of features supported

by the send(), sendto(), and sendmsg(), or recv(), recvfrom(), and recvmsg()

system calls. Consequently, adding support to the shim for network I/O requires modifi-

cation to only sendit() and recvit(). Unlike the system calls that require significant

additional code to support the desired shim features (i.e., connect()), the network I/O

functions require only the socket substitution described in Section 2.1.6 to operate prop-

erly. The excerpt below illustrates the code to substitute the hidden SCTP socket in place

of the normal TCP socket that is necessary to support the network I/O functions with the

shim.

if(SHIM_ACTIVE(so)) {
so = so->so_shimsock;

}

The sendfile() system call is used by applications to simplify the efficient trans-

fer of files through a socket. As with sendit() and recvit(), substitution of the hidden

SCTP socket in place of the normal TCP socket is the only functionality required to add

support to the shim for this system call.
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2.6.2 File Operations: Read, Write, Ioctl, Poll, & Stat

A socket descriptor can be used as a normal file descriptor by applications per-

forming I/O. Thus, the standard read(), write(), ioctl(), poll(), and stat() sys-

tem calls typically associated with file I/O must also work with a socket descriptor. To

support this functionality, the file structure for a socket descriptor has a table of imple-

mentations of read(), write(), ioctl(), poll(), and stat() specific to a network

socket rather than the usual file-specific implementations that are normally associated

with a traditional file. The socket-specific versions of the standard read(), write(),

ioctl(), poll(), and stat() calls are implemented by the soo read(), soo write(),

soo ioctl(), soo poll(), and soo stat() functions in the kernel. As with the net-

work I/O system calls described in Section 2.6.1, the standard file I/O system calls for

sockets can be modified to support the shim by adding code to perform the substitution of

the hidden SCTP socket in place of the normal TCP socket when the shim is in use. No

further modifications are required for these functions to support the shim functionality.

2.7 Close & Shutdown

One traditional file I/O system call that has not been modified to do hidden socket

substitution similar to the other calls is close(). Recall from Section 2.1.4 that the

socket() system call is modified by the shim to create both a normal TCP socket and

a hidden SCTP socket together. Substituting the hidden SCTP socket in place of the

normal TCP socket when calling close would result in only the hidden socket being deal-

located; the resources from the normal socket would not be reclaimed and a memory

leak would occur in the kernel. Rather than substituting one socket object for the other,

close() must check the normal TCP socket to determine if it has a hidden child SCTP

socket, deallocating that hidden socket before deallocating the normal TCP socket. The

lack of any need for socket substitution when closing the socket descriptor results in

the soo close() function remaining unmodified. All of the modifications necessary for
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proper deallocation of both the hidden and normal sockets are made in the soclose()

socket layer function.

if(SHIM_READY(so)) {
soclose(so->so_shimsock);
so->so_shimsock = NULL;
so->so_shimstate = SS_SHIM_NOTINIT;

}

The listing above shows the code added to the soclose() socket layer function to

handle proper deallocation of the hidden SCTP shim socket. The kernel first checks the

shim state of the parent socket. If the shim is in the SHIM READY state, a hidden SCTP

socket was previously allocated, and must be closed and deallocated (see the description

of shim states in Section 2.3). After deallocation of the hidden socket, the shim state is set

to SHIM NOTINIT to indicate that no hidden SCTP socket is linked to the normal TCP

parent socket. Since the operating system ensures that close() is called on every open

file and socket descriptor when an application exits, soclose() runs for each and every

socket, guaranteeing the proper deallocation of all shim resources.

The shutdown() system call is similar to close() but is seldom used in most

applications. Unlike the close() system call, which closes the network connection and

then deallocates the socket descriptor, shutdown() only closes one or both directions of

the open full-duplex connection and leaves the socket descriptor allocated. In the case

of the shim, calls to shutdown() while the shim is enabled are handled identically to

the other usual I/O calls by passing the hidden SCTP socket to the lower layers rather

than the normal TCP socket. This behavior results in the ongoing SCTP association

being terminated. After an application closes a network connection with shutdown(),

the application must still use close() to deallocate the socket descriptor as usual.

2.8 Socket Options & Socket Addresses

The client socket behavior with connect(), the server socket functionality of

bind(), listen(), and sonewconn(), and the operation of normal socket I/O are the
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most critical aspects of the TCP-to-SCTP translation shim. However, the proper handling

of socket options and socket address-related system calls is essential to ensure all legacy

TCP applications running over the shim work without unexpected side effects or prob-

lems. In the following sections, we describe the shim’s handling of socket options and

socket address operations.

2.8.1 Socket Options

Socket options are protocol parameters maintained at different levels in the In-

ternet protocol stack that are exposed to the application. The options are represented as

name-value pairs where the value might be as simple as a boolean on/off setting or a more

complex data structure. Through the sockets API, an application may request the current

value of a certain option, and in some cases, the application may also specify a new value

to be used instead. An application gets and sets these socket options using two system

calls, getsockopt() and setsockopt(), respectively.

if(getsockopt(sock_fd, SOL_SOCKET, SO_ERROR, &value, &len) == -1) {
perror("getsockopt");
exit(1);

}

The sample code above illustrates how an application uses the getsockopt() sys-

tem call with a typical socket option. In the example, the first parameter, SOL SOCKET,

is the level of the option, the second parameter, SO ERROR, is the name of the option,

and the last two parameters specify the value and size of the value, respectively.

2.8.2 Socket Option Levels

All socket options are divided into levels based on the protocol that actually im-

plements the option in question. Socket options that apply directly to the socket itself are

included in the level SOL SOCKET. All other levels are specified by the standard protocol

number that is assigned to the protocol implementing the option. For example, options
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directed to TCP have the level IPPROTO TCP, options to IP have the level IPPROTO IP,

and so on. When an application gets or sets a socket option using the appropriate system

call, each level of the protocol stack examines the level parameter of the specified option,

checking for a match. If the protocol finds it matches the level of the option, the protocol

module then checks the name of the option and handles the option appropriately. If the

protocol is not the responsible level, the option is passed down the protocol stack to be

handled at the correct level.

2.8.3 Translating Socket Options

When the TCP-to-SCTP translation shim is introduced into the existing socket

option system, some modifications are required for correct operation. While any options

for the network layer and below will work normally even with the shim, socket options

that affect the socket layer itself or the transport layer need to take special care to function

correctly in the presence of the shim.

In the case of socket layer options, when the shim is enabled the options need to be

applied to the hidden SCTP socket rather than the normal TCP socket. This functionality

only requires a simple check: if the shim is in the enabled state, the kernel follows the

link from the normal TCP socket to the hidden SCTP socket and passes the hidden socket

to the lower layers instead. The lower layers then apply the specified option to the hidden

socket rather than the normal socket.

In the case of socket options destined for the transport layer, an additional trans-

lation step is necessary to support the TCP-to-SCTP translation shim. In particular, most

TCP implementations have only two socket options: TCP MAXSEG for getting and set-

ting the maximum size of a TCP segment, and TCP NODELAY for enabling and disabling

the Nagle algorithm. If the shim were in the enabled state and special precautions were

not taken, these options might be invoked by a legacy TCP application. However, with

the shim enabled, TCP is not in the stack of protocols when the socket option is passed

down the stack. The option would travel from the socket layer, to SCTP, to IP, and then
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down through the link layer. At no point along this line would TCP be able to intercept

the option and handle it properly. Eventually the option would pass down through every

layer, at which point an error would be returned to the application.

To avoid this situation when the shim is enabled, the kernel needs to translate TCP

socket options to their SCTP equivalents. Since both the maximum segment size and

Nagle algorithm are standard transport protocol attributes, SCTP also implements these

options (SCTP MAXSEG and SCTP NODELAY). The code below is used in the kernel

to translate both the socket option level from IPPROTO TCP to IPPROTO SCTP and the

socket option names from their TCP versions to the corresponding SCTP versions.

if(translate_options) {
switch(sopt.sopt_level) {

case IPPROTO_TCP: sopt.sopt_level = IPPROTO_SCTP; break;
}

switch(sopt.sopt_name) {
case TCP_NODELAY: sopt.sopt_name = SCTP_NODELAY; break;
case TCP_MAXSEG: sopt.sopt_name = SCTP_MAXSEG; break;

}
}

2.8.4 Socket Addresses

An application can use the getpeername() and getsockname() system calls to

retrieve the socket address of the remote endpoint and the local endpoint of a connection,

respectively. (A socket address is a structure consisting primarily of the address and port

number.) Socket addresses are maintained by the transport protocols when connected,

so to support the TCP-to-SCTP translation shim, the kernel needs to determine if either

the normal TCP socket or the hidden SCTP socket is currently the active endpoint. The

proper active socket is then passed to the appropriate transport protocol for the retrieval

of the address and port information, which is then returned to the application.
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2.9 Shim Performance Configuration

Application performance when running over the TCP-to-SCTP translation shim

depends on SCTP, and consequently, on SCTP’s configuration. To allow key SCTP set-

tings for the shim to be configured independently from those for standard native SCTP

applications, we created additional sysctl variables to allow an administrator to fine-tune

the shim’s key SCTP settings. The three areas of focus are address use on multihomed

systems, association startup time, and path failover time.

2.9.1 Controlling Address Use on Multihomed Systems

A typical legacy TCP application uses the bind() system call to associate a socket

with a local address and port number. Because TCP allows binding to only a single

address, a traditional TCP application creates a socket address structure with the desired

address and port number and passes the structure to the kernel via bind(). Passing a

specific address presents a problem when the shim is in use, since the application’s call

to bind() is actually being made on the hidden SCTP socket rather than a TCP socket.

The semantics of the bind() call in SCTP are such that the application will use only the

specified address and leave all other addresses on a multihomed system unused. While

a native SCTP application can use the sctp bindx() call to bind to specify multiple

address to bind to, a legacy TCP application cannot. Binding to a single address by using

a normal bind() call overrides the natural multihoming that takes place on a multihomed

system using SCTP by artificially restricting the possible set of address which can be

used.

As a counter to applications running over the TCP-to-SCTP shim exhibiting this

type of behavior, we have introduced a new sysctl, net.inet.sctp.shim.force bindall,

which allows an administrator to force a shim-enabled kernel to ignore the address passed

by the application to bind(). When force bindall is enabled, instead of binding a

socket to the single address passed in by a legacy TCP application, the kernel overrides
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the application and uses every available address for the local SCTP endpoint. The over-

ride is accomplished by substituting the wildcard address INADDR ANY in place of the

original address passed by the application. (A bind() call on an SCTP socket using IN-

ADDR ANY effectively binds to all possible local addresses.) Allowing the endpoint to

use all available addresses increases the likelihood that multihoming can be exploited to

increase the fault tolerance of an application using the shim. Multihoming also allows for

the possibility that CMT could be used between the two association endpoints to improve

application throughput.

2.9.2 Controlling Association Startup Time

SCTP normally retransmits an INIT message up to Max.Init.Retransmits times

(implemented as the net.inet.sctp.init rtx max sysctl in FreeBSD) when attempt-

ing to establish an association with a peer endpoint. The SCTP Implementor’s Guide [21]

currently recommends that this value be set to a default of 8. With exponential back-

off, the time required to retransmit the INIT message 8 times is approximately 4 min-

utes (1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 seconds). As discussed in Section 2.4, when

the transparent TCP-to-SCTP translation shim is enabled, the kernel first attempts to set

up an SCTP association with the remote endpoint. If SCTP is unavailable on that end-

point or no server process is listening on the specified port, the kernel will fall back

to a traditional TCP connection. To remain transparent to the application, the length

of time to decide whether or not SCTP is available must be limited to a reasonable

amount that will not significantly impact the application. To avoid waiting over 4 min-

utes for 8 consecutive retransmissions of the INIT message, we introduce a new sysctl

variable, net.inet.sctp.shim.init rtx max, which serves the same purpose as the

corresponding global SCTP sysctl variable, but only applies to associations initiated by

the shim. This variable allows an administrator to restrict the worst-case connection

startup delay for applications using the shim to a configurable length of time, while leav-

ing the default value for native SCTP applications unaffected. We currently implement
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the shim.init rtx max variable with a default value of 1, meaning that the kernel will

send a total of 2 INIT messages before falling back to TCP. This value avoids SCTP be-

ing abandoned due to a single random INIT loss, while keeping the application wait time

short. Administrators should choose a value that balances their interest in using SCTP

with the wait times they are willing to tolerate before giving up and resorting to TCP.

Section 4.2.1 describes a proposed solution to reduce the time overhead required to detect

endpoints where SCTP is unavailable.

2.9.3 Controlling Shim Path Failover Time

SCTP’s Path.Max.Retrans, or PMR, configuration parameter (implemented as the

net.inet.sctp.path rtx max sysctl in FreeBSD) can have a direct effect on the through-

put of an application operating in a multihomed environment. The PMR value is a

threshold that defines when SCTP considers the primary address of a multihomed peer

to be unreachable and consequently initiate a failover to an alternate address. Recent

results [2] illustrate how varying the aggressiveness of the PMR threshold affects appli-

cation throughput.

In addition to raw throughput, the PMR setting affects how responsive an appli-

cation running over SCTP or the shim “feels” to the user. In the event of a failure of

one destination of a multihomed endpoint, retransmission timeouts follow an exponential

backoff up until Path.Max.Retrans retransmissions have occurred, at which point SCTP

will fail over and begin using an alternate destination of the endpoint for data delivery.

The SCTP Implementor’s Guide currently recommends that PMR default to 5, meaning

that approximately 1 minute (1 + 2 + 4 + 8 + 16 + 32 seconds) of minimal throughput

occurs before SCTP fails over to an alternate destination and resumes normal data trans-

fer [3, 21]. In human-interactive applications, such as streaming music, login sessions,

or web browsing, this delay could be easily perceived by the user. Allowing SCTP’s

fault tolerant multihoming to engage more rapidly when using the shim could prevent

users from closing and reconnecting the application, as the typical response to such a
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failure with a traditional TCP application would be. We introduce a new shim sysctl,

net.inet.sctp.shim.path rtx max, to allow administrators to independently define

SCTP’s PMR value for applications using the shim to allow flexible configuration of this

parameter.

2.10 Design Summary

We have designed and implemented a transparent TCP-to-SCTP translation shim

layer in the FreeBSD 4.10 operating system kernel. Due to limitations in the original

design of the sockets model, our approach introduces a hidden SCTP socket to allow

legacy TCP applications to operate in a hybrid fashion. A hybrid client approach provides

a shim user with flexibility, allowing client applications to first attempt to use SCTP,

falling back to TCP should SCTP be unavailable, while a hybrid server enables both

TCP and SCTP clients to be served concurrently by a single server instance. Our design

and implementation features a control system based on rule matching with application

address and port usage, allowing the shim to be selectively enabled or disabled on a

per-application basis. The shim supports all standard socket API system calls and I/O

functionality, including the ability to properly translate TCP socket options into their

SCTP equivalents. In our implementation, we have enhanced the kernel with several

new sysctl variables, giving administrators the ability to dynamically configure the shim’s

most important parameters to achieve the desired shim behavior. Our shim design gives

legacy TCP applications access to many of SCTP’s advanced features without requiring

any modifications to the applications themselves.
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Chapter 3

EXPERIMENTAL EVALUATION

3.1 Applications Running Successfully with Shim

Using the initial implementation of the TCP-to-SCTP translation shim, we ex-

perimentally evaluated several popular applications running over the shim in terms of

usability and performance. From a usability standpoint, we are interested in determin-

ing whether applications operate correctly if calls to TCP are transparently translated to

SCTP, and SCTP replaces TCP at the transport layer without the application’s knowl-

edge. Additionally, we are interested in whether the user perceives any difference due

to this change. Our experiments serve as a proof-of-concept that the shim idea is not

only theoretically feasible, but also technically feasible. Sections 3.1.1 and 3.1.2 describe

the applications we verified to work correctly running over the shim in legacy-legacy

mode and legacy-native mode, respectively. Besides showing applications can run over

the shim without any visible changes in behavior or functionality, we quantify that ap-

plications running over the shim achieve performance equivalent to or greater than when

running over a normal TCP connection. We describe these experiments in more detail in

Section 3.3.

3.1.1 Legacy-legacy Configuration

Recall that the shim’s legacy-legacy mode (Figure 1.2) is used to allow two legacy

TCP peer applications to communicate using SCTP at the transport layer rather than TCP.

This mode of shim operation allows the applications to take advantage of SCTP’s ad-

vanced features without requiring any modifications to the applications themselves. We
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selected four types of applications that represent the network usage of a typical Internet

user: Telnet, SSH, HTTP, and Icecast [17] streaming audio. Each application was com-

piled and installed in the standard fashion without any modification to the source code.

The particular implementations and versions of each application used in testing are as

follows:

• Telnet: The standard Telnet [14] client and server applications distributed as part of

the FreeBSD 4.10 operating system were used to test the functionality of a remote

Telnet login session operating over the TCP-to-SCTP translation shim. Both the

Telnet client and server functioned correctly while running over the shim and no

errors occurred during testing.

• SSH: In addition to Telnet, we also experimented with running SSH over the shim.

SSH is a remote login protocol that incorporates encryption and is significantly

more complex than Telent. The client and server programs used for our SSH ex-

perimentation were those included in OpenSSH 3.9p1 [11]. Our experiments found

that SSH operated over the shim flawlessly without any identified errors. Addition-

ally, the SSH application suite includes the file transfer utility SCP that was used

in the quantitative shim performance evaluation described in Section 3.3. SCP also

performed without error when operating using the shim rather than a normal TCP

connection.

• HTTP: In the legacy-legacy configuration, we tested HTTP over the shim using

Apache 2.0.43 [5] as the web server, and Firefox 1.04 [4] as the web browser client.

In our experiments, we verified web pages (including all embedded objects, such as

images) downloaded and displayed correctly in the browser when the interactions

between the client and server were run over the shim’s SCTP associations rather

than TCP connections.
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• Icecast Streaming Audio: Icecast is a streaming audio server that streams music

in the Ogg Vorbis [6] format. For our testing, we used the Icecast 2.2.0 streaming

audio server and the XMMS [25] media player as the client. In our experiments,

we found the audio quality when using the shim to be identical to the quality when

using a normal TCP connection and did not encounter any problems.

Although the set of applications we experimented with is not exhaustive, we be-

lieve the flawless operation of these four applications when using the shim indicates the

shim will be a viable and practical tool for almost all existing legacy TCP applications.

We are only aware of one potential problem relating to legacy TCP applications that ex-

plicitly depend on the behavior of TCP’s half-closed state. We discuss this case in Section

3.2.

3.1.2 Legacy-native Configuration

In addition to testing the interaction of two legacy TCP endpoints using the shim,

we also experimented with HTTP in the legacy-native configuration (Figure 1.3) using a

version of the Apache webserver that was rewritten to natively support SCTP clients [20],

and the Firefox browser used in the HTTP experiments for the legacy-legacy configura-

tion. In the legacy-native configuration, one endpoint, in this case the modified Apache

server, is an application that is written to natively support SCTP, while the other end-

point, in this case the Firefox web browser, is a legacy TCP application using the shim

to translate calls to TCP into corresponding calls to SCTP. The results of testing HTTP

over the shim in legacy-native mode were identical to the results from the legacy-legacy

mode test; the web pages were downloaded and rendered flawlessly. The success of this

test validates the gradual migration path motivation of the TCP-to-SCTP translation shim

project.

52



3.2 Shim Limitation: Lack of Half-Closed State

In our experimentation with various legacy TCP applications operating over the

TCP-to-SCTP translation shim, we found most applications functioned normally without

any detectable problems. One notable exception to this rule are applications which ex-

plicitly depend on the semantics of TCP’s half-closed connection ability. We discovered

the half-closed problem while testing a version of FTP rewritten to run over SCTP. Al-

though the problem is actually caused by differences between how TCP and SCTP handle

the closing of a connection and not a design flaw in the shim itself, the problem should be

addressed to allow the shim to experience the widest real world deployment.

3.2.1 TCP & SCTP Connection Closing

Closing a TCP connection involves a four-way handshake between the two con-

nected peers. One endpoint first sends a FIN packet to its peer, indicating the desire to

close the the connection. The endpoint receiving the FIN packet responds with an ACK,

indicating that the FIN was received. At this point in the process, the connection is half

closed. The TCP connection remains in the half-closed state until the remaining active

endpoint sends its own FIN packet to fully close the the connection. By design, SCTP

does not have a half-closed state. When one endpoint in an established SCTP associ-

ation sends a SHUTDOWN packet, the peer receiving the shutdown must immediately

stop accepting new data from the application. Once any data already accepted for trans-

mission before the SHUTDOWN was received has been delivered, the receiver of the

SHUTDOWN packet replies with a SHUTDOWN-ACK packet. Once the sender of the

SHUTDOWN receives the SHUTDOWN-ACK, the SHUTDOWN sender replies with a

SHUTDOWN-COMPLETE packet and the connection closes. The exact sequence of

events followed by TCP and SCTP when closing a connection or association is not the

focus, however. The important distinction between how the two close methods work is in

TCP both endpoints must agree to close before the connection is torn down. With SCTP,

one endpoint can unilaterally decide to close the association and the other peer has no
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alternative but to comply and begin shutdown procedures. We describe how the differ-

ences in close semantics between TCP and SCTP can affect legacy application behavior

in Section 3.2.2, using FTP as an example.

3.2.2 Effect of Half-Close on Shim Operation

To illustrate how the lack of a half-closed state in SCTP can cause problems for

some applications using the shim, we show an example consisting of one segment of an

FTP file transfer over the shim. Using the shim, the FTP control connection uses one asso-

ciation, and each data connection uses a separate SCTP association. (Although the shim

cannot use two SCTP streams within a single association for control and data because

streams require application awareness, work in [10] investigates this idea.) Figure 3.1

shows a timing diagram for a file transfer over FTP in normal, non-passive mode. (Solid

lines represent exchanges over the control connection, dotted lines represent data connec-

tion exchanges.) In non-passive FTP, the client creates a listening socket and sends the

address and port number of the listening socket to the FTP server with a PORT command.

After receiving a 200 message reply from the server, the client issues a RETR command

for the file to be retrieved. The FTP server then establishes an SCTP association for the

file transfer (the data connection) by connecting to the client’s specified address and port

number, and sends a 150 message after the connection is open. Upon receiving the 150

message, the client calls accept() to handle the server’s incoming data connection and

begins reading as the server sends the file data. Once the file transfer is complete, the

server closes the data connection and sends a 226 message.

While the shim would operate correctly in the case just described, now consider

what would happen if the 150 message were to be lost and retransmitted, as outlined

in Figure 3.2. Since the client does not call accept() until receiving the 150 message

from the server, the data connection is set up, the file contents are transferred, and the

server closes the connection all before the client even has a chance to read the data. (The

operating system kernel is responsible for handling all of the connection setup and can
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Figure 3.1: FTP file transfer over shim (SCTP)
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Figure 3.2: FTP file transfer over shim (SCTP) with loss of 150 message

receive up to a window of data before the application calls accept()). After the 150

message is retransmitted and finally received, the client tries to call accept(), but the

data connection has already been closed, causing an error. (Note: this situation arises

when the time to transfer the file is less than the retransmission time for the lost 150

message, which is common for small files on broadband links.)

Consider the same situation where the original 150 message is lost when FTP

is running over a normal TCP connection rather than the shim, pictured in Figure 3.3.

Because TCP supports a half-closed state, when the server issues a close() command
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Figure 3.3: FTP file transfer over TCP with loss of 150 message

after transferring the file contents, only half of the connection is closed. For the connection

to be completely closed, the client also has to issue a close() command. Because one

endpoint cannot unilaterally close a connection completely in TCP, the client is able to

call accept() and then read the file data before eventually calling close() itself. Only

after the client calls close() will the TCP connection be completely closed.

Due to the differences between how TCP and SCTP close connections, applica-

tions running over the shim that depend on the half-closed state may sometimes experi-

ence unexpected behavior or errors when situations similar to those described with FTP

57



arise in practice. In an effort to make the shim robust against incompatibilities arising

from SCTP’s lack of a half-closed state, we propose a possible solution to allow the shim

to simulate TCP’s half close, which we describe in Section 4.2.3.

3.3 Performance Analysis

The experiments described in Sections 3.1.1 and 3.1.2 serve as a proof-of-concept

for the shim, showing that the idea of translating calls to TCP into equivalent calls to

SCTP without the application’s knowledge is practical for several popular network appli-

cations. Showing that applications running over the shim function correctly is an impor-

tant component of testing the TCP-to-SCTP translation shim. However, such tests do not

quantitatively show how the performance of application interaction when using the shim

compares to the performance when applications use normal TCP connections. In Sec-

tion 3.3.1, we describe the setup of our experimental evaluation of shim’s performance in

terms of application throughput during file transfers. Section 3.3.2 discusses the results

and conclusions of the performance evaluation.

3.3.1 Experimental Setup

For our experiments, we measure the total time required to transfer files of various

sizes using the SSH suite’s SCP tool when running over a normal TCP connection and

when running over the shim using an SCTP association. We compare the transfer times

for TCP and the shim at a variety of loss rates.

• Bandwidth/Propagation Delay Configuration: We use a 1.5 Mbps, 35 ms delay

path in all of our experiments, simulating the bandwidth and delay for a typical

broadband Internet user in a US coast-to-coast connection configuration. The path

is symmetric, so the bandwidth and delay are the same for both the client to the

server, and the server to the client.
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• Packet Loss Rates: We examined transfer time with uniform loss rates of 0, .01,

.03, .06, and .1. Similar to the bandwidth-delay configuration, the loss rates are

symmetric so the paths from the client to the server and from the server to the client

experience the same loss rate.

• File Sizes: To determine if the size of the file being transferred affects the transfer

times for TCP or the shim disproportionally, we transfer files of size 50 KB, 500

KB, 5 MB, and 25 MB.

Each experiment required three nodes: a server running SSH (and consequently

SCP), an SCP client, and an intermediate node running Dummynet [19] to simulate band-

width, propagation delay, and loss rate configurations. The intermediate Dummynet

router node was configured with a tail-drop queue of 50 packets and performed uniform

random loss at the rates described above. Each node was a Pentium 4 system running

FreeBSD 4.10 with a KAME kernel supporting SCTP. The SCTP version used was patch

level 25, released in February 2005. To prevent the experiments with the shim from nat-

urally taking advantage of the SCTP’s multihoming ability and using other paths not part

of the simulation topology, we disabled all interfaces besides the ones attached to the

Dummynet-simulated network on the client and server systems before beginning the ex-

periments. Disabling the alternate interfaces allowed for a fair comparison between TCP

and the shim because SCTP was restricted to the simulated network, and was unable to

use the alternate 100 Mbps, negligible-delay paths between the client and server nodes.

Each run of the experiment involved measuring the total time required to issue the

SCP command on the client to retrieve a single file, and then transfer the entire file from

the server, including the SSH key exchange overhead. We used a public-key authentica-

tion configuration rather than passwords with SSH to allow the experiments to be run in a

non-interactive batch mode. Every combination of file size and loss rate was run with the

1.5 Mbps/35 ms bandwidth-delay configuration a total of 30 times, except the 50K file

experiments which were run 90 times per loss rate due to higher variance in the transfer
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times. Thus, each data point in the graphs shown in Section 3.3.2 is the average of 30 (or

90) runs of the same file size/loss rate configuration.

3.3.2 Experimental Results

Figures 3.4, 3.5, 3.6, and 3.7 display our recorded transfer times for each simulated

loss rate for 50 KB, 500 KB, 5 MB, and 25 MB files, respectively. In situations where

SCTP is available on both peer endpoints, the shim adds no significant communications

overhead beyond the inherent differences in the transport layer protocols being used or

substituted. The case where SCTP is unavailable for application use on the peer system

can be a source of overhead during the connection establishment process as described in

Section 2.9.2; a proposed solution to this situation is described in Section 4.2.1. Because

the nodes in our experiment support SCTP and both the SSH/SCP client and server have

the shim enabled, no additional overhead is introduced by using the shim. The differ-

ences in transfer times are entirely due to the specific features and implementations of the

underlying transport protocols.

The graphs yield two main observations about application throughput over a TCP

connection versus the shim with an SCTP association. First, in situations without any

network-induced loss, TCP and the shim perform approximately equivalently. Although

not visible in the graphs, TCP had a slight edge with average transfer times between 4

and 240 ms faster than the shim at 0 percent loss across all four file sizes tested. This

difference is likely a result of SCTP’s more complex four-way association establishment

handshake compared to TCP’s three-way handshake. The second observation is that for

all runs with loss rates greater than 1 percent, the shim running over SCTP outperforms

TCP by an increasing margin as loss rates increase. The trend of the shim providing

better application throughput at all loss rates greater than 1 percent holds across all files

sizes, with longer transfers (i.e., 25 MB files) seeing a greater improvement than short

transfers (i.e., 50 KB files). We argue that the greater throughput afforded by the shim

in high loss conditions is due to the advanced congestion control features in SCTP, such
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as Limited Transmit, Appropriate Byte Counting, and Selective Acknowledgments, that

are not present in FreeBSD 4.10’s version of TCP (New Reno) [10]. Our results from

experimenting with SCP over the shim confirm the same trends at high loss rates as the

work in [10] which experimented with various implementations of FTP running over

SCTP. We speculate that if TCP were to incorporate the same congestion control features

that SCTP currently supports, throughput for applications running over both the shim and

normal TCP connections would be similar at all loss rates.

We feel our experimental results show the transparent TCP-to-SCTP translation

shim is technically feasible, functions effectively with common network applications

under realistic conditions, and provides performance (measured in terms of application

throughput) that is equivalent to or better than what is possible using TCP.
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Figure 3.4: Transfer Time vs. Loss Rate for 50 KB file transfer over 1.5 Mbps/35 ms
delay link
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Figure 3.5: Transfer Time vs. Loss Rate for 500 KB file transfer over 1.5 Mbps/35 ms
delay link
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5 MB Transfer: 1.5 Mbps/35 ms
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Figure 3.6: Transfer Time vs. Loss Rate for 5 MB file transfer over 1.5 Mbps/35 ms
delay link

25 MB Transfer: 1.5 Mbps/35 ms
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Figure 3.7: Transfer Time vs. Loss Rate for 25 MB file transfer over 1.5 Mbps/35 ms
delay link
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Chapter 4

CONCLUSION & FUTURE WORK

4.1 Conclusion

The transparent TCP-to-SCTP translation shim encourages the increased deploy-

ment of SCTP by providing a path for gradual migration from legacy TCP applications to

native SCTP applications. In addition to encouraging the use of SCTP by ensuring com-

patibility with legacy TCP applications, the shim also allows legacy TCP applications

to enjoy SCTP’s multihoming advantages (i.e., fault tolerance and concurrent multipath

transfer) without requiring any modifications to the legacy applications themselves.

The experimental results presented in Chapter 3 illustrate that not only is the shim

approach an interesting theoretical concept, but the shim is technically feasible in practice

with real applications under typical network conditions. The hope of this work is that

users and developers alike will begin to appreciate how the advanced features provided

by SCTP can be extremely valuable for network applications. By ensuring that existing

legacy TCP applications can seamlessly interact with new SCTP applications, the shim

encourages innovation and the increased deployment of SCTP throughout the Internet.

4.2 Future Work

Although the TCP-to-SCTP translation shim as currently implemented works well

with many applications and is robustly designed, the shim has some limitations, and has

the potential for additional features. The following sections address some of the areas

where improvement might be useful or additional features could be explored to enhance

the shim into more valuable tool.
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4.2.1 Parallel TCP and SCTP Connection Attempts

Data transfer between two applications using the shim does not incur any addi-

tional overhead (i.e., delay or throughput) beyond the normal overhead of the underlying

transport protocol in use. Specifically, using the shim does not affect the performance of

application data transfer; only the inherent differences between TCP and SCTP, and how

they handle loss, congestion, and failure affect performance. The one situation where

using the shim can degrade performance is during the connection or association estab-

lishment phase.

As described earlier in Section 2.4, the connect system call is modified in order

to support the TCP-to-SCTP translation shim. When the shim is enabled for a particular

application, that application first tries to connect to its peer using an SCTP association,

falling back to a regular TCP connection if the peer does not support SCTP. In cases where

the remote endpoint does not support SCTP, this detection process takes at least one RTT

to complete and fall back to TCP, which then requires another RTT in order to set up the

regular TCP connection.

This additional delay of at least one RTT in situations where SCTP is unsupported

by the remote system could be avoided by having the shim initiate an SCTP association

and a TCP connection to the remote endpoint in parallel. By the time the unavailability

of SCTP is detected, the TCP connection should already be established, so data trans-

fer could then begin immediately. If a parallel connection approach is used in scenarios

where SCTP is available on the remote system, the TCP connection would simply be torn

down once the SCTP association has been established. The decision to attempt connec-

tions with both transport protocols in parallel using the shim could be configurable by an

administrator using a sysctl variable.

4.2.2 Caching SCTP Availability of Peers

Along similar lines with Section 4.2.1’s idea of initiating both SCTP associations

and TCP connections in parallel, another approach to reduce setup overhead might be
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to have the shim cache knowledge about whether SCTP was available to a particular

application on a particular host. This cached information would allow the shim to skip

the SCTP or TCP setup phases in situations where the shim knows a priori that recent

interactions with that application or host have successfully used either SCTP or TCP. A

caching feature could be integrated into the shim and then enabled or disabled using a

sysctl variable. Additional configuration parameters could include the duration of the

cache lifetime, and how many recent entries to cache.

4.2.3 Simulating TCP’s Half-Close

The most drastic difference between TCP and SCTP that has a visible effect on

application functionality when using the TCP-to-SCTP translation shim is the lack of

a half-closed state in SCTP. Because some existing TCP applications depend on TCP’s

half-closed state to operate correctly, SCTP’s lack of a half-closed state can present com-

plications for legacy TCP applications attempting to use the shim. A prime example of

how this difference between TCP and SCTP can cause problems was described using FTP

as an example in Section 3.2.

To ensure compatibility for all legacy TCP applications running over the TCP-to-

SCTP translation shim, the shim may be able to exchange control information between

the two connected peers to simulate the behavior of TCP’s half close. Simulating the

half-closed state would allow any TCP applications that depend on the semantics of the

half-close to function correctly even when running over the shim. Legacy TCP applica-

tions using the shim have no knowledge of SCTP streams and use stream 0 for commu-

nication by default. A topic of future investigation would be to examine the feasibility of

simulating TCP’s half-closed state by exchanging control messages over another stream

that is unused by the applications. This approach would add complexity because the shim

would need to monitor the application data stream for control messages on other streams,

but would make the shim compatible with legacy TCP applications that rely on the half-

close. One possibility is adding support for this feature to the shim but using an expanded
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rules table to only enable the half-close compatibility mode when deemed necessary, for

instance when connecting to an FTP server port.

4.2.4 Shim Applicability to UDP Using PR-SCTP

Currently, the shim is designed only to translate system calls to TCP into equiva-

lent calls to SCTP. One area of future work might be to investigate the applicability of a

translation shim technique for UDP. Using the partial reliability extension to SCTP (PR-

SCTP) [22], UDP-like services may be able to be provided in addition to taking advantage

of the fault tolerance and possible CMT benefits of SCTP multihoming.

The existing design of the translation shim is TCP-centric, so some extensions

would be required to extend support to UDP. Particularly, the shim rules table would need

additional fields to allow each rule to specify whether the protocol the rule applies to is

TCP or UDP. Any protocol to be used with the shim needs to have an IP protocol number,

for example IPPROTO TCP, IPPROTO UDP or IPPROTO SCTP. The reason for this

requirement is that the normal protocol and the protocol being invoked through the shim

need to have independent port spaces.

TCP and SCTP are more similar than UDP and SCTP, so extending the shim to

support UDP and then experimenting to see how UDP applications react to running over

SCTP via the shim might be an interesting research effort.

4.2.5 Multiplexing TCP Connections in SCTP Streams

SCTP supports multiple data streams within a single association. These streams

are independent flows of data which do not block each other, essentially “virtual con-

nections” flowing inside a single, real SCTP association. Since legacy TCP applications

running over the TCP-to-SCTP shim are unaware of the existence of multiple streams, one

interesting area of exploration would be to consider multiplexing multiple TCP connec-

tions between two hosts through a single SCTP association between the two endpoints.
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For example, suppose a user on one system is running several legacy TCP appli-

cations over the shim, all of which connect to the same remote host. Rather than having

an SCTP association for each application, perhaps a single real association could be used

in place of all of the individual associations, where each individual association is mapped

to one stream within the single, real SCTP association.

Motivations for why this multiplexed architecture might be desirable include keep-

ing congestion information and RTT information current and accurate. Consider the case

where several connections exist between two endpoints, but not all of the connections

are active at once. After enough time passes, idle connections will have stale RTT and

congestion measurements that may no longer reflect the present network conditions. If

these independent data flows were instead multiplexed through a single SCTP association

via separate streams, activity on any given flow/stream would maintain accurate network

statistics for all of the flows since they are part of the same association. This strategy

would make network operation more efficient for general cases where several long-term

flows exists between two endpoints that are not continuously transmitting.

4.2.6 Comprehensive Shim Logging

Currently, the shim supports a single level of logging where only major error sit-

uations are written to the system log. A future area of work to simplify debugging of the

shim would be to implement customizable log levels so that amount of detail appearing in

the system log could be configured by the system administrator. Logging could be turned

off completely or kept at a minimal level when the shim is operating properly for in-

creased performance, with the option to enable more detailed logging for shim debugging

purposes.
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